Modelling and optimization of renewable energy supply for electrified vehicle fleet

Dipl.-Ing. Torsten Schwan

Dipl.-Ing. René Unger

EA Systems Dresden GmbH

Prof. Dr.-Ing. Bernard Bäker
Institute of Automotive Technologies Dresden - IAD
Dresden University of Technology

Outline

- Introduction and Motivation
- Modelica-based simulation environment 'Green Building'
- Coupling vehicle and building systems simulation
- Simulation examples and results
- Summary and outlook

Introduction and Motivation

Changed situation – residence and mobility

- Former situation: People commuting to work, energy supply to buildings (grid, etc.) seperated from energy supply to vehicles (petrol station)
- Future situation: Electrified vehicles, energy supply to buildings and vehicles connected (electricity), renewable energy producers, local storage systems

Introduction and Motivation

Holistic energy system design requires simulation

Energy management

source: [EA]

Charging of electric Vehicles

Phase change memories (PCM)

source: [Hac02]

SmartGrid

aging, costs

source: [Soc10]

Batteries – non-linear characteristics,

Introduction and Motivation

Great variaty of existing simulation tools and systems

Modelica-based environment 'Green Building' Approach from automotive industry

Modelica:

 Non-proprietary, object-oriented, non-causal, equation-based language to model complex, domain-overall physical systems

Modelica car model with engine, braking system, gearbox etc.

'Green Building' building energy system model including heat storage, photovoltaic, battery, heat pump, boiler and eVehicle

Modelica-based environment 'Green Building' Inputs, outputs and usage of simulation environment

Inputs

- · Location, climate
- Energy prizes
- Building and system configuration
- Inhabitants and requirements
- eMobility

Model library

- Energy producers and consumers
- Storages
- Ambience and Grid
- eVehicles

Test and optimization

- Fast → 1h per year with short step size
- Simulated characteristics instead of references
- Optimization for "real-world" conditions
- Synthetic statistics

Outputs

- Gains and Consumption
- Dimensions and feasibility
- Costs and profitableness
- Strategies for energy management and storage

Coupling vehicle and building simulation eVehicles as a part of bulidung energy system model

- From Building's point of view: eVehicle is additional consumer/storage
- Interesting system states: SOC of battery when vehicle is available at charging station as well as average energy consumption when driving – preprocessing required

Coupling vehicle and building simulation

Calculation/simulation of vehicle energy consumption

Simulation examples and resultsSimulation of renewable parking lot

- optimal PV peak power
- angle and inclination
- battery size
- cost efficiency
- renewable energy share

Renewable energy share of a renewable parking area lighting

Example: 5 kWh battery, 4 kWp photovoltaic optimal alignment (south, inclination 35°)

Layout of battery capacity for renewable parking area lighting

18

- Variants calculation for photovoltaic system size and battery capacity layout

 layout target: highest annual share of renewable energy (south, inclination 50°)
- Low coverage in winter in case of cheap PV-system and storage combinations
 - Few sunshine
 - Long light-on times
- System oversizing in summer even in case of small PV-systems and storage capacities
- Optimum: Layout regarding transitional time and cost aspects
- This way: "optimal":3-4 kWp PV-system4-10 kWh battery capacity

High Investment Costs
optimizing your energy applications

Complex example – Office building with vehicle fleet

Office Building (1.500 m²), Electrical energy consumption 50 kWh/m²a, CHP (40 kW_{th}), PV-system 8.5 kWp optimizing your energy applications

Complex example – Results

- Difference between electrical energy consumption and grid-feeding depending on battery capacity with eight vehicles
- Comparatively low battery size reduce electrical energy balance (high renewable enery production)
- Low differences between summer and winter (PV – summer, CHP – winter)
- Renewable energy share of electricity consumption of a fleet with 4 vehicles depending on stationary battery size
- Battery size especially important at sunny days – storage of photovoltaic energy at noon when vehicles cannot be recharged (usage scenario)

Summary and outlook

- Holistic energy system layout requires simulation approaches (static calculations are not feasible any more)
- Vehicles and building energy systems have to be considered together (renewable energy usage for eVehicles)
- Modelica enables users to simulate different domains together (heat, electricity, etc.) base of 'Green Building'
- Combined simulation of vehicle-building-system requires sufficient precalculations (differing time constants – vehicles (milli-seconds-seconds) – building (hours-days))
- Simulation examples chosen to evaluate vehicle fleet behavior vehicle fleet first fields for eVehicle usage (range, costs, routes)
- Sufficient energy system layout needed to avoid high running costs (electricity consumption) and to reduce emissions (electricity production in power plants)

Any Questions?

Contact:

EA Systems Dresden Gmbl Königstraße 2 01097 Dresden +49-351-656839-44 torsten.schwan@eaenergie.de

